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ABSTRACT: 

 

Imaging spectroscopy data can provide detailed information about vegetation type and growth stage 

over large areas. Our goal is to investigate the potential of hyperspectral data to assess the agricul-

tural land use. We focus in particular on the development of a classification technique enabling the 

identification of selected agricultural crops and their growth stages. During the growing season dif-

ferent plant properties like chlorophyll content, water content and biomass are coupled with plant 

cover changes leading to high variabilities in their reflectance spectra. Nevertheless, every plant 

type of a specific growth stage features typical spectral characteristics enabling a separation. The 

classification is based on simulated hyperspectral reflectance data. Multitemporal three dimensional 

plant models of winter rye, winter wheat and winter barley are created with AmapSim and linked to 

field measured ASD spectra using ray racing. Based on these artificial reflectance data a classifica-

tion in terms of plant type and growth stage is performed by pairwise Minimum Distance Classifica-

tion (pMDC). Classes are separated by a set of predefined spectral features one against one. The 

classification is applied on a hyperspectral HyMAP image with masked cereal crop fields. The re-

sults yield an overall accuracy of 91.9% for the crop type and phenological determination. 

 

 

1. INTRODUCTION 

The agricultural system of vegetation and soil 

has a high temporal dynamic. This results in a 

different canopy reflectance signal for each 

growth stage of each crop type, that must be 

treated as an individual class in a classifica-

tion task to build a transferable classifier for 

crop types. Therefore, it is a challenging task 

to get a sufficient amount of training samples 

for the parameterisation of a supervised clas-

sifier. One method is the collection of training 

data from a high amount of images covering 

the whole phenological development of the 

crop types. A second method is to collect field 

measurements. Here we have the problem of 

different spatial resolution and a changed 

viewing geometry compared to an airborne 

spectrometer leading to different fractional 

abundances of plants and soils.  

For this reason the simulation of canopy re-

flectance could be a proper tool to generate 

input data for the parameterisation of a super-

vised classifier. A large number of forward 

models of canopy scattering have been devel-

oped for different applications to simulate 

canopy reflectance (e.g., Goel, 1988; Goel & 

Thompson, 2000). “Typically a form of radia-

tive transfer approach to describe the (domi-

nant) volume scattering behaviour of the can-

opy-soil system” (Disney et al., 2006) is used 

by these models to simulate relatively ho-

mogenous canopy types like crops. Enhanced 

methods incorporate the natural canopy struc-



 

ture by the use of 3D plant models and 3D 

soil models (Lewis, 2007). This enables the 

possibility to include detailed reflectance 

properties of plant parts and to use ray tray-

cing for the calculation of the overall canopy 

reflectance.  

In this manner simulated canopy reflectance 

data for selected crop types and growth stages 

are generated and used to develop and param-

eterise a new supervised classifier. In this 

study its applicability to real HyMap data is 

presented. 

 

 

2. SIMULATION OF CROP CANOPY 

REFLECTANCE 

2.1 Data 

The simulation process requires spectral 

information about the phenological 

development of plant organs for detailed 

modelling and the total canopy signal for 

validation purpose. Furthermore, geometric 

data describing the plant’s shape and size are 

needed to model the plants. To obtain a 

natural structure of the 3D canopy model the 

distribution and density of the plants within 

the canopy are estimated in the field. 

 

2.1.1 Reflectance of Plants, Canopy and 

Soil 

Reflectance spectra were measured for winter 

rye (Secale cereal L.), winter wheat (Triticum 

L.) and winter barley (Hordeum vulgare L.) 

canopies at two different test sites in Germany 

(Beelitz-Wittbrietzen and Berlin-Dahlem) 

with the FieldSpec Pro FR (ASD, 1999). The 

measurements were collected under clear sky 

conditions 5 cm above different plant organs 

using an 8° foreoptic. The measured parts of 

the plant are leaf, culm and ear. The data are 

corrected for spectral artefacts (detector 

jumps) and bands with low signal-to-noise-

ratio (SNR) caused by atmospheric radiative 

absorption are removed.  

 

2.1.2 Geometry of Plants, Canopy and Soil  

Plant geometry was recorded simultaneously 

to the spectral acquisition. Thereby geometric 

information about shape, sizes, composition 

and arrangement (angles and distances) were 

measured. Additionally, several height 

profiles of the soil were measured for further 

surface modelling. These data are the input 

parameters for building the topology and 

geometry of the 3D plants as well as the 

structure of the 3D canopy-soil-system. 

 

2.2 Modelling a 3D Canopy 

The generation of the virtual 3D landscape is 

based on 3D Plant Models, soil background 

information including a soil DEM and plant 

positions and density within the canopy. 

 

2.2.1 3D Plant Model 

The plant models are simulated using the 

software AmapSim (Barczi et al. 2007). that 

provides a tool to reconstruct plants virtually 

based on real measurements. It also contains a 

structural growth model based on botanical 

theory to simulate plant morphogenesis 

producing accurate, complex and detailed 

plant architectures. Shape parameters of the 

plant organs leaves, stems and ears were 

acquired at different growth stages to define 

the organ sizes and their growth dynamics. 

For further information see Barczi et al. 

(2007). 

 

The following growth stages for winter rye, 

winter wheat and winter barley are modelled: 

tillering, stem elongation, ripening and 

senescence. Furthermore late senescence 

growth stage of barley is modelled because of 

strong optical changes during this growth 

stage.  

As an example three simulated growth stages 

of winter rye and their naturally appearance is 

shown in Figure 1. 
 



 

 

Figure 1. Real and simulated rye plants at 

three growth stages: a) tillering, b) stem elon-

gation, c) development of fruits. 

2.2.2 3D Soil Model and Canopy 

Geometry  

Field-measured height profiles are used to 

generate a soil DEM with typical geometry 

and furrow distances. The furrows results of 

mechanical drilling of the seed. The plant 

models were placed to the DEM by cloning 

and including a random rotation around their 

vertical axis (Lewis 1999). The distances 

between the furrows and the number of plants 

placed within a defined section have a direct 

impact on the density of the canopy. 

 

2.3 Canopy Reflectance Simulation 

Canopy reflectance data is determined by the 

acquisition and illumination geometry as well 

as the geometry and spectral information of 

the objects on the surface. To obtain these 

mixed spectra an artificial 3D crop field was 

built up and measured virtually by ray tracing. 

Ray tracing is a method to generate two 

dimensional (2D) image data by tracing the 

path of light through a 3D scene onto an 

image plane (Glassner, 1989). 

The reflectance of the virtual 3D canopy is 

estimated by the Advanced RAdiometric RAy 

Tracer (ARARAT) developed by Philip Lewis 

(Lewis, 1999; Lewis & Muller, 1992). 

ARARAT calculates the canopy reflectance 

based on 3D canopy descriptions with 

associated spectral information, camera 

imaging properties and illumination 

conditions by using reverse ray tracing. For 

detailed information see Lewis (1999). 

Several camera models are implemented in 

the ARARAT software. For this study the 

planar camera model for central perspective 

measurements was used since a spectrometer 

is measuring in an analogous manner (ASD, 

1999). Since, the infield canopy spectra were 

measured in nadir direction the virtual camera 

was adjusted in the zenith viewing position. 

The illumination of the 3D scene is described 

by azimuth (180°) and zenith angle (30°) of 

the sun assuming parallel rays. 

 

 

3. METHODS 

The basic idea of this work is to use simulated 

spectra for the parameterisation of a classifier 

that can be applied on real image data. To 

evaluate the potential of several standard 

classification methods (Tab.1) we applied 

them on reflectance data, PCA transformed 

data (9 components), Discriminant Analysis 

Feature Extraction (DAFE) transformed data 

(Kuo & Landgrebe 2001: 19ff) and an image 

including spectral features defined based on 

knowledge. The features are assumed to be 

invariant against spectral variations of classes 

and BRDF effects and thus, should enable the 

development of a stable and transferable 

classifier compared to a classification on 

reflectance data (Heiden, 2007). The basic set 

of features include ratios, depth and areas of 

absorption bands as well as coefficients of 

polynomial approximations, averages and 

standard deviation that are calculated within 

different spectral intervals. 

 

Considering the acquisition date of the 

HyMap image (20.06.2007) acquired in the 

south west of Berlin and the weather 

conditions of the growing period the input 

training classes are reduced to the possible 

ones which are: 

� winter rye  - ripening, senescence,  

� winter wheat  - ripening, senescence,  

� winter barley  - ripening, early senescence,    

    late senescence. 



 

By far, the best results are obtained applying 

Minimum Distance Classification (MDC) and 

Support Vector Machines (SVM) with the 

one-against-one (OAO) approach on the 

feature image. Thus, the robustness of spectral 

features is confirmed. 

 

The bad performance of maximum likelihood 

classification is due to the small variance of 

training samples that does not allow a 

reasonable estimation of the covariance 

matrix for each spectral class (Richards 1999: 

189) compared to real image data acquired 

with the HyMap sensor (see Fig. 2). 
 

 

 

Figure 2. Difference of the class variances 

between simulated and HyMap reflectance 

data (HyMap from 20.06.2007 at Wittbrietzen 

test site) 

 

In this study the only changing parameter is 

the composition of the used plants. To 

increase the variance many parameters for 

each class can be changed like viewing 

geometry, illumination geometry, soil, 

different plant parameters and many more. 

Considering the processing time of an 

individual spectrum, of 1h up to 24h, 

depending on the growth stage, a strong 

limitation for the number of simulated spectra 

is set. These conditions lead to very low 

variance within the training data of a class. 

 

For that reason it is necessary to develop a 

classifier that is able to handle this situation. 

We therefore combine the most promising 

concepts of the individual classifications into 

a new classifier which is described in the next 

section. These concepts are:  

� Robustness of spectral features, 

� Reduction of the dimensionality of the 

feature space by knowledge based feature 

selection, 

� Reduction of the dimensionality of the 

feature space by OAO approach. 

 

The developed pairwise minimum distance 

classifier (pMDC) consist of numerous 

individual MD-classifiers, one for each class 

decision. This necessitates an additional step 

to determine the final class of a pixel but has 

a great advantage against the simultaneous 

classification of all classes: Each pairwise 

class decision is taking place in an optimised 

feature space which consists of only the few 

relevant spectral features defined for each pair 

of classes. The OAO approach is especially 

suitable for the case of a high number of 

classes as planned to be implemented in the 

future and for a small amount of training data. 

 

The combination of the individual 

classification results of the pMDC is 

schematically illustrated in Figure 3 for an 

image with 4 pixels. In the first run the class 

decisions of the pairwise MD-classifiers are 

counted for each pixel. The class with the 

highest score gets accounted for each pixel. In 

case of an ambiguous class decision caused by 

a draw the decision of the pairwise MD-

classifier of the relevant classes is counted 

twice. 

 



 

 

Figure 3. Classification scheme for an image 

with 4 pixels 

 
 

4. RESULTS 

The pMDC is applied on HyMap data 

acquired at the 20.06.2007 with masked crop 

fields. Compared to the results of standard 

classification methods (Table 1) we get a very 

high overall accuracy of 91.9%. The 

accuracies for the individual crop fields are: 

� winter wheat  – 95.62%, 

� winter rye  – 89.70%, 

� winter barley  – 92.90%. 

The incorrect class results in the lower part of 

the barley field can be explained are mostly 

due to a strong occurrence of weed in this part 

of the field causing a change of the reflectance 

signal.  

 

Table 1. Overall accuracy of different 

classifiers parameterised with simulated 

training samples and applied on real HyMap 

data 

Using the spatial borders of the crop fields as 

addition information, 100% accuracy can be 

achieved by assigning the majority class to the 

fields. 
 

 

Figure 4. Classification results of the pairwise 

MD-classifier 
 

 

5. CONCLUSION AND OUTLOOK 

In this study we showed the high potential of 

the pMDC method to identify crop types and 

growth stage by using simulated reflectance 

data as input data. Compared to standard 

methods it is a significant improvement of the 

results. 

 

To evaluate the robustness of this method it 

will be tested on more fields and different 

sensors in the future. Furthermore, it is 
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Maximum 

Likelihood 
14.6 14.8 21.2 17.6 

Mahalanobis 

Distance 
1.0 0.8 1.1 2.9 

Minimum Distance 4.9 4.9 8.7 63.7 

SAM 13.2 14.5 11.5 27.9 

SVM (OAA) 14.0 9.3 6.2 13.5 

SVM (OAO) 3.8 5.7 8.4 61.1 

pMDC - - - 91.9 



 

planned to increase the number of growth 

stages that can be distinguished and to further 

automatise the process of classifier build-up 

and application to obtain a fast and accurate 

landuse classification of crops on demand. 
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